Effect of manipulation of the feet and ankles on postural control in elderly adults

Jacques Vaillanta,b, Nicolas Vuillermea,b, Audrey Janveyb, Fran\c{c}ois Louisc, Renaud Braujoud, Robert Juvine, Vincent Nougiera,*

aLaboratoire TIMC-IMAG, Equipe SPM, Universit\`e Joseph Fourier, UMR CNRS 5525, Grenoble, France
bEcole de Kin\'esith\`erapie du Centre Hospitalier Universitaire de Grenoble, France
cCentre de Pneumologie Henri Bazire, Saint Julien de Ratz, France
dCentre Hospitalier, Saint Laurent du Pont, France
eService de Rhumatologie du Centre Hospitalier Universitaire de Grenoble, France

Received 13 February 2006; received in revised form 5 October 2006; accepted 5 July 2007
Available online 31 July 2007

Abstract

The purpose of the present experiment was to investigate the effect of a therapeutic manipulation of the feet and ankles on postural control during quiet standing in elderly adults. Seventeen elderly adults stood barefoot on a force platform and were asked to sway as little as possible. Within a trial, vision was suppressed by eyes closure. The task was executed in two experimental sessions: before and after a therapeutic manipulation of the feet and ankles. Centre of feet pressure (COP) displacements along the mediolateral (ML) and anteroposterior (AP) axes were recorded. For the two experimental sessions, subjects exhibited comparable COP displacements when vision was available and were similarly affected by the suppression of vision. However, when subjects had to adapt to the absence of vision within a 10 s temporal frame, postural behaviour became different in the two experimental sessions: the sum of the ML and AP COP displacements increased within the 10 s temporal frame before the therapeutic manipulation of the feet and ankles, whereas it remained unchanged after it. These results suggested that the therapeutic manipulation of the feet and ankles allows the elderly adults to partially compensate for the destabilising effect induced by the suppression of vision.

© 2007 Elsevier Inc. All rights reserved.

Keywords: Manipulation; Foot; Ankle; Balance; Elderly

1. Introduction

Postural control is a particularly complex system involving various sensory and motor components. Among the sensory inputs relevant to the regulation of postural sway, the importance of somatosensory information from the feet and ankles is now well established [2,4,14,15]. Data supporting this view were obtained through experimental and clinical approaches. Experimental manipulations of somatosensory information from cutaneous, muscles, tendons and joints receptors were shown to have an effect on postural control, as evidenced either by cooling [12], anaesthetising [14,15,24] or stimulating [7,8,13] the plantar soles, by vibrating ankle muscles [6,8], by applying an ischemic block above the ankles [1,4], or by changing the characteristics of the supporting surface on which individuals are standing [17,18]. Clinically, alteration or loss of somatosensory information from the lower limbs resulting from disease (diabetic peripheral neuropathy) is known to impair postural control [19]. Progressive degeneration of sensory inputs from the lower extremities also represents a common clinical finding associated with aging [9,21] and has even been identified as an important contributing factor to the occurrence of falls in elderly [10,25]. Therefore, it is legitimate to propose that a therapeutic intervention designed to increase somatosensory function of the feet and ankles could be of great interest for controlling balance and preventing falls in the elderly. While the benefits of proprioceptive exercises are documented [5,20], it is surprising that there is an absence of data investigating whether and how a therapeutic manipulation of the feet and ankles can modify postural control in elderly adults.
The purpose of the present experiment was to improve the understanding of the contribution of distal lower limb inputs to the control of balance during functional activities. More precisely, it was to investigate the effects of a therapeutic manipulation of the feet and ankles on postural control during quiet standing in elderly adults. Since visual information is known to play an important role in postural control, particularly in elderly [11,22], subjects’ ability to regulate their postural sway was evaluated while being exposed to an abrupt suppression of visual information, as previously done by others [6,23]. It was hypothesised that an “over-activation” of somatosensory information induced by a therapeutic manipulation of the feet and ankles allows the elderly persons to compensate for the destabilising effect of visual suppression. Since the somatosensory system includes various receptors that provide information about pressure distribution (cutaneous), muscle tension (Golgi tendon organs), joint angle changes (joint receptors) and muscle length changes (spindles), the intervention involved manual massage of the feet and mobilisation of both the feet and ankles joints.

2. Methods

Seventeen male elderly adults (mean age = 74.5 ± 9.6 years; mean body weight = 73.2 ± 12.3 kg; mean height = 165.6 ± 9.3 cm) participated in the experiment. Subjects were volunteers and gave written informed consent to the experimental procedure as required by the Helsinki declaration (1964) and the local Ethics Committee. None of the subjects presented any musculoskeletal problems, defects in the peripheral sensory system of the lower extremities, vascular pathology, neurological disorders or vestibular impairment. Finally, all subjects had normal or corrected-to-normal vision.

Subjects stood barefoot on a force platform, feet joined, and were asked to sway as little as possible, with their eyes open. Fifteen seconds into a trial, an auditory stimulus directed the subjects to close their eyes. A trial finished with 10 s of no-vision. When vision was available, subjects were asked to fixate the intersection of a black cross placed onto the white wall distant 1 m in front of them, at the eyes level. When vision was not available, they were asked to keep their gaze in a straight-ahead direction. This task was executed in two experimental sessions (Pre- and Post-test). Six 25 s trials were executed for each experimental session, for a total of 12 trials. The duration of an experimental session lasted 6 min, approximately. The Pre-test served as a control session. In the Post-test session, the measurements were performed immediately after a therapeutic manipulation of the feet and ankles. This intervention, widely used by manual therapists [3], was designed to target the somatosensory system of the feet and ankles, using manual massage of the feet and mobilisation of both the feet and ankles joints.

The aim of the massage was to enhance local blood circulation and to stimulate cutaneous receptors. Massage technique application involved frictions and glide force pressure of the plantar sole. Mobilisations elicited dorsiflexion and plantar flexion of the mortise joints, eversion and inversion of the subtalar joints, anteroposterior glide, torsion, flexion and extension of the midtarsal joints, anteroposterior glide and rotation of tarsometatarsal joints, anteroposterior glide of intermetatarsal joints, plantar flexion and extension of metatarsophalangeal and interphalangeal joints. Manual massage and articulation techniques were applied to both the feet and ankles for 20 min. Six 25 s trials were executed for each experimental session, for a total of 12 trials. The duration of an experimental session lasted 6 min, approximately.

A force platform (AMTI model OR6-5-1) was used to measure displacements of the centre of foot pressure (COP). Signals from the force platform were sampled at 200 Hz (12 bit A/D conversion) and filtered with a second-order low-pass Butterworth filter (10 Hz cut-off frequency).

COP displacements (in millimetres) along the mediolateral (ML) and anteroposterior (AP) axes were used to estimate a global postural performance before and after the therapeutic manipulation. This measure corresponds to the sum of the displacement scalars over the sampling period. For convenience purposes, these two dependent variables will be referred to as ML and AP COP displacements, respectively. The first 10 s of a trial were used to allow subjects’ stabilisation. COP displacements were analysed over three periods of 4 s, immediately before the suppression of vision (T1), 1 s after the visual transition to prevent from the presumed effect of the visual transition from vision to no-vision (T2) and at the end of the trial (T3). Comparison of these three temporal frames yielded information on (1) the immediate effect of the suppression of vision on COP displacements (T1 versus T2) and (2) the postural adaptation over time to the absence of vision (T2 versus T3).

Analyses of variance (ANOVA) were used for statistical comparison of the different conditions. Level of significance was set at 0.05. Post-hoc analyses (Newman-Keuls) were used whenever necessary.

3. Results

Fig. 1 illustrates representative COP displacements across a trial from a typical subject for each of the two Pre (left panel) and Post-test (left panel) experimental sessions.

3.1. Postural control following the suppression of vision

A preliminary analysis consisted in controlling whether the immediate effect of the suppression of vision on COP displacements was similar across the trials performed in the Pre-test session for the temporal frames T1 versus T2. The first three and the last three trials of the Pre-test session were compared using 2 Series (First 3 versus Last 3 trials) × 2 Temporal frames
(T1 versus T2) ANOVAs. For both the ML and AP COP displacements, results showed no effect of Series and no interaction of Series × Temporal frame (Ps > 0.05). This suggested that the immediate effect of the suppression of vision on COP displacements was constant across the Pre-test trials. Thus, data obtained in the Post-test session were not likely to be confounded with a possible effect of training or fatigue.

The purpose of the following analysis was to investigate whether subjects’ ability to immediately adapt to the transition from vision to no vision was modified by the therapeutic manipulation of the feet and ankles. Two Sessions (Pre versus Post-test) × 2 Temporal frames (T1 versus T2) ANOVAs with repeated measures on both factors were applied to the data.

Analysis of the ML COP displacements showed a main effect of Temporal frame, with smaller ML COP displacements before than immediately after the suppression of vision (F(1, 16) = 27.58, P < 0.001). The absence of an interaction of Session × Temporal frame (P > 0.05) showed that the therapeutic intervention did not affect ML COP displacements immediately after the visual transition (Fig. 2A).

Analysis of the AP COP displacements confirmed a main effect of Temporal frame (F(1, 16) = 31.26, P < 0.001) and showed a main effect of Session, yielding smaller AP COP displacements in the Post-test than in the Pre-test session (F(1, 16) = 8.01, P < 0.05). The absence of an interaction of Session × Temporal frame (P > 0.05) also showed that the therapeutic intervention did not affect AP COP displacements immediately after the suppression of vision (Fig. 2B).

To further investigate the persistence of the effect of the manipulation of the feet and ankles, the first three and the last three trials of the Post-test session were compared using 2 Series (First 3 versus Last 3 trials) × 2 Temporal frames (T1 versus T2) ANOVAs. For both the ML and AP COP displacements, results showed no effect of Series and no interaction of Series × Temporal frame (Ps > 0.05). This suggested that the therapeutic intervention on COP displacements was constant across the Post-test trials, for 6 min at least.

3.2. Adaptation of postural control to the absence of vision

A preliminary analysis controlled whether the postural adaptation to the suppression of vision within a 10 s temporal frame was similar in the trials performed in the Pre-test session for the temporal frames T2 versus T3. The first three and the last three trials of the Pre-test session were compared using 2 Series (First 3 versus Last 3 trials) × 2 Temporal frames (T2 versus T3) ANOVAs. For both the ML and AP COP displacements, results showed no effect of Series (Ps > 0.05), and no interaction of Series × Temporal frame (Ps > 0.05). This suggested that postural adaptation to the suppression of vision within a 10 s temporal frame was constant across the Pre-test trials. This further confirmed that data obtained following the therapeutic manipulation were not likely to be confounded with a possible effect of training or fatigue.

The purpose of the following analysis was to investigate whether subjects’ adaptation to the effect of the visual transition within a 10 s temporal frame was modified by the therapeutic intervention. Two Sessions (Pre versus Post-test) × 2 Temporal frames (T2 versus T3) ANOVAs with repeated measures on both factors were applied to the data.

Analysis of the ML COP displacements showed a significant interaction of Session × Temporal frame (F(1, 16) = 6.53, P < 0.05). The decomposition of the interaction into its simple main effects showed that ML COP displacements increased over time in the Pre-test session, with smaller values immediately after the suppression of vision than after 6 s of adaptation in No-vision (P < 0.05), whereas they remained unchanged in the Post-test session (P > 0.05) (Fig. 2A).
Analysis of the AP COP displacements showed a significant interaction of Session × Temporal frame ($F(1, 16) = 5.48, P < 0.05$). The ANOVA also confirmed main effects of Temporal frame ($F(1, 16) = 4.53, P < 0.05$) and Session ($F(1, 16) = 11.07, P < 0.01$). The decomposition of the interaction into its simple main effects showed that AP COP displacements increased over time in the Pre-test session, with smaller values immediately after the suppression of vision than after 6 s of adaptation in No-vision ($P < 0.01$), whereas they remained unchanged in the Post-test session ($P > 0.05$) (Fig. 2B).

To further investigate the persistence of the effect of the therapeutic manipulation of the feet and ankles, the first three and the last three trials of the Post-test session were compared using 2 Series (First 3 versus Last 3) × 2 Temporal frames (T2 versus T3) ANOVAs. For both ML and AP COP displacements, results showed no effect of Series ($Ps > 0.05$), and no interaction of Series × Temporal frame ($Ps > 0.05$). This suggested that the benefits of the therapeutic intervention on COP displacements were constant across the Post-test trials, for 6 min at least.

4. Discussion

The purpose of the present experiment was to investigate the effects of a therapeutic manipulation of the feet and ankles on postural control during quiet standing in elderly adults. Subjects’ ability to maintain a stable upright posture was evaluated while facing changes in the availability of visual information before and after the therapeutic intervention. Withdrawing visual information forced the subjects to reorganise the hierarchy of sensory information since vestibular and proprioceptive inputs became the only remaining sources of sensory information available for regulating posture.

Before and after the therapeutic manipulation, subjects exhibited comparable COP displacements when vision was available (temporal frame T1), suggesting that the massage and mobilisation of the feet and ankles had no immediate effect on postural stability and/or that vision largely compensated for the presumed benefits of a therapeutic manipulation. Previous studies showed similar compensations following fatigue of the lower limbs [26]. Similarly, the therapeutic manipulation did not affect COP displacements immediately following the visual transition from vision to no-vision (temporal frame T2). This absence of effect may be due to the limited impact of the therapeutic manipulation with respect to the amplitude of normal body oscillations in the absence of vision.

Interestingly, it is when adapting to this absence of vision within a 10 s temporal frame that the postural behaviour in the two experimental sessions became different (temporal frame T3). After 10 s of adaptation, postural instability still increased in the control session whereas following the therapeutic manipulation subjects seemed able to provide a rapid recalibration and reorganisation of postural control to take into account the new sensory conditions by switching from visual to proprioceptive control. This adaptive mechanism would ensure a stabilisation of subjects’ postural behaviour following the withdrawal of vision.

With regard to the hypothesis of a global “over-activation” of somatosensory information induced by the therapeutic manipulation of the feet and ankles, the present results are in line with those of Nougier et al. [16] when altering somatosensory inputs by means of a foam support surface. In their experiment, postural control in young adults was analysed in different conditions of vision and two conditions of ankle proprioceptive information (normal and altered support surface with a 5 cm thick foam support). When somatosensory information was not altered, as in the Post-test session, young subjects adapted to the absence of vision. Conversely, when the proprioceptive inputs were altered by the use of the foam support surface, as in the Pre-test session, subjects showed no adaptation. Altogether, these results and the present ones demonstrate that the quality of somatosensory information plays a major role in compensating for the absence of vision. In the present case, the therapeutic manipulation seemed to partially compensate for the observed alteration of somatosensory information with age [9,21], by temporarily increasing subjects’ sensitivity to these inputs.

In conclusion, the present findings showed that elderly adults can benefit from a therapeutic manipulation of the feet and ankles, even though estimated for a short time, for regulating their postural sway during quiet standing. This suggested that such manipulations may allow people to overcome or compensate for functional difficulties due to age and more generally to disease-related sensory loss. It remains, however, to further investigate the underlying neurophysiological mechanisms and to better locate the sites of these effects. It remains also to further investigate the overall duration of the observed benefits in order to validate the utility of these various manipulations and to better specify the most efficient characteristics of a training/rehabilitation program that would include this kind of manipulation.

References

